|本期目录/Table of Contents|

至少存在一个正周期解的一类传染病模型(PDF)

《内蒙古大学学报(自然科学版)》[ISSN:1000-9035/CN:22-1262/O4]

期数:
2019年06期
页码:
600-603
栏目:
研究论文
出版日期:
2019-11-15

文章信息/Info

Title:
The Existence of at Least One Periodic Solutions of an Epidemic Model
作者:
张云飞孙玉琴
鄂尔多斯应用技术学院,内蒙古 鄂尔多斯 017000
Author(s):
ZHANG Yun-feiSUN Yu-qin
Ordos Insititute of Technology,Ordos 017000,China
关键词:
周期解拓扑度理论 Mawhin连续性定理
Keywords:
periodic solution topological degree theory Mawhin’s continuous theorem
分类号:
-
DOI:
-
文献标识码:
A
摘要:
讨论了传染率为周期函数、具有双线性传染项的S-I-R模型周期解的存在性问题,利用极限方程理论、拓扑度理论和Mawhin连续性定理,证明了该模型存在至少一个正的周期解.
Abstract:
The existence of periodic solution for an epdemic model with periodic infectious parameter and bilinear incidence is discussed.The existence of at least one positive periodic solutions of the S-I-R models is proved by the limiting equation theory,the topological degree theory and Mawhin’s continuous theorem.

参考文献/References

[1] Gaines R E,Mawhin J L.Coincidence degree and nonlinear differential equations[M]. Berlin:Springer-Verlag,1977.
[2] Carlos C C,Thieme H R.Asymptotically autonomous epidemic models[M]. Winnipeq,Canada:World  Scientific Publishing Co.,1995.
[3] Thieme H R.Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations[J]. J Math Biol,1992,30:755-763.
[4] Mischaikow K,Smith H,Thieme H R.Asymptotically Autonomous Semiflows:Chain Recurrence and Lyapunov Funtions[J].Transactions of the American Mathematical Society,1995,347(5):1669-1685.

备注/Memo

备注/Memo:
收稿日期:2018-12-13; 修回日期:2019-08-28
基金项目:鄂尔多斯应用技术学院科研项目(KYYB201712)
作者简介:张云飞(1982-),男,陕西榆林人,讲师,硕士.
更新日期/Last Update: