|本期目录/Table of Contents|

无穷维Hamilton算子闭值域研究(PDF)

《内蒙古大学学报(自然科学版)》[ISSN:1000-9035/CN:22-1262/O4]

期数:
2017年06期
页码:
607-611
栏目:
研究论文
出版日期:
2017-11-15

文章信息/Info

Title:
A Study on the Closed Range of Infinite Dimensional Hamilton Operators
作者:
苏日古嘎吴德玉阿拉坦仓
内蒙古大学数学科学学院,呼和浩特 010021
Author(s):
SurigugaWU DeyuAlatancang
School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China
关键词:
无穷维Hamilton算子闭值域HyersUlam稳定性
Keywords:
infinite dimensional Hamilton operatorclosed rangeHyersUlam stability
分类号:
-
DOI:
-
文献标识码:
A
摘要:
主要研究了无穷维Hamilton算子的值域的闭性问题.运用扰动理论和HyersUlam稳定性,给出无穷维Hamilton算子的值域为闭的充分条件.最后给出例子,加以说明判别准则的有效性.
Abstract:
The closed range of infinite dimensional Hamilton operators is studied.Using the perturbation theory and HyersUlam stability,the sufficiant conditions of the closed range of infinite dimensional Hamilton operators are given.In the end,some examples are given to illustrate the effectiveness of the proposed criterion.

参考文献/References

[1] 黄永刚.上三角型算子矩阵值域的闭性和Fredholm性[D].呼和浩特:内蒙古大学,2013.
[2] 鲁世杰.关于Banach空间中有闭值域的幂零广义导算子[J].科学通报,1988,33(13):968971.
[3] 张少华.具有闭值域的广义导算子[J].复旦大学学报:自然科学版,1986,25(3):16091610.
[4] 张少华.具有闭值域的Rosenblum算子[J].科学通报,1987,32(21):16091610.
[5] 杜鸿科.关于闭值域算子[J].陕西师范大学学报,1983,2:1825.
[6] 陈剑岚.关于算子闭值域的两个定理[J].福建师范大学学报:自然科学版,2010,26(2):1619.
[7] 王小荣,张云南.关于算子值域闭性的注记[J].福建师范大学学报:自然科学版,2007,23(5):1518.
[8] 鲁世杰.闭值域算子的摄动[J].浙江大学学报:自然科学版,1989,23(2):153156.
[9] Mohammad M S,Shadir G.Perturbations of Closed Range operators[J].Turkish Journal of Mathematics,2009,33(2):145164.
[10] 吴德玉,阿拉坦仓.分块算子矩阵普理论及其应用[M].北京:科学出版社,2013.
[11] Kato T.Perturbations Theory for Linear operators[M].New York:SpringerVerlag,2002.
[12] Hirasawa G,Miura T.HyersUlam Stability of a Closed operator in a Hilbert Space[J].Bulletin of the Korean Mathematical Society,2006,43:107117.
[13] Hatori O,Kobayashi K,Miura H Takagi,et al.On the best constant of HyersUlam Stability[J].Journal of Nonlinear Convex Analysis,2004(3):145164.
[14] Conway J B.A Course in Operator Theory[M].New York:American Mathematical Society,2000.
[15] 崔丽英,李林松.Wilson函数方程的HyersUlam型稳定性[J].延边大学学报:自然科学版,2009,35(4):283286.
[16] 崔哲男,王彪,赵顺实,等.广义二次函数方程在模糊赋范空间上的HyersUlam稳定性[J].延边大学学报:自然科学版,2014,40(3):189193.
[17] Wang Zhonghua,Cao Huaixin,Tao Huanting.The generalized HyersUlam stability of a functional equation[J].Basic Sciences Journal of Textile Universities,2013,26(1):8289.
[18] 许璐,曹怀信.算子方程的HyersUlam稳定性[J].纺织高校基础科学学报,2008,21(1):5860.
[19] 蔡建明.二阶线性微分方程的HyersUlam稳定性[J].河南科学,2014,32(5):694696.
[20] Xin Bangying,Xu Mingyong.HyersUlam Stability of a System of FirstOrder Linear Differential Equations with Variable Coefficients[J].Journal of Southwest University:Natural Science Edition,2009,31(7):6974.

备注/Memo

备注/Memo:
收稿日期:20170529
基金项目:国家自然科学基金(11561048,11371185);内蒙古自治区自然科学基金(2015MS0116)资助
作者简介:苏日古嘎(1993-),女(蒙古族),内蒙古通辽人,2014级硕士研究生.
通信作者:阿拉坦仓(1963-),男(蒙古族),内蒙古兴安盟人,教授.Email:alatanca@imu.edu.cn
更新日期/Last Update: