|本期目录/Table of Contents|

柱形容器中理想流体双频驱动Faraday界面波的不稳定性(PDF)

《内蒙古大学学报(自然科学版)》[ISSN:1000-9035/CN:22-1262/O4]

期数:
2013年04期
页码:
362-366
栏目:
研究论文
出版日期:
2013-08-30

文章信息/Info

Title:
Instability Analysis of Interfacial Waves of Ideal Fluids in a Cylindrical Container Driven by Two Frequency Components
作者:
刘全生1 菅永军1 长龙2 杨联贵1
1. 内蒙古大学数学科学学院, 呼和浩特 010021;
2. 内蒙古财经大学统计与数学学院, 呼和浩特 010051
Author(s):
LIU Quan-sheng1 JIAN Yong-jun1 CHANG Long2 YANG Lian-gui1
1. School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China;
2. School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot 010051, China
关键词:
双频驱动Faraday波不稳定性
Keywords:
two-frequency parametric excitationFaraday waveinstability
分类号:
O351.3
DOI:
-
文献标识码:
-
摘要:
在普遍的柱形容器中,利用分离变量法求解Laplace方程和线性化的边界条件,得到了包括表面张力影响的双频驱动Faraday界面波的振幅方程.利用双层单频黏性流体的阻尼系数对该振幅方程进行修正.然后利用多尺度时间展开法分析了新的振幅方程的不稳定性.通过方程求解,给出不同驱动频率、驱动振幅、相位差、表面张力所确定的不稳定性区域.
Abstract:
In a common cylindrical container, the method of separation of variables is used to solve the Laplace equation and linear boundary conditions, and the amplitude equation of dual-frequency driving Faraday interface wave affected by surface tension is obtained.Using the damping factor of the double single frequency of a viscous fluid the amplitude equation is corrected.Then with the method of multi-scale time expansion the instability of the new amplitude equation is analyzed.Through solving the equation, the instability areas determined by different driving frequency, amplitude, phase difference and surface tension are given.

参考文献/References

[1] Faraday M.On the forms and states assumed by fluids in contact with vibrating elastic surfaces[J].Phil Trans R Soc Lond,1831,121(1):319-340.
[2] Benjamin T B,Ursell F.The stability of the plane free surface of a liquid in vertical periodic motion[J].Proc R Soc Lond A,1954,255(1163):505-515.
[3] Gao Y X,E X Q.Ordered and chaotic modes of surface wave patterns in a vertically oscillating fluid[J].Communications in Nonlinear Sciences & Numerical Simulation,1996,1(2):1-6.
[4] E X Q,Gao Y X.Visualization of surface wave patterns of a fluid in vertical vibration[M].Beijing:Proceedings of the Fourth Asian Symposium on Visualization,1996:653-658.
[5] 高宇欣,鄂学全.微幅振荡流体表面波图谱显示方法[J].实验力学,1998,13(3):326-333.
[6] Miles J W.Nonlinear surface wave in closed basins[J].J Fluid Mech,1976,75(3):419-448.
[7] Meron E,Procaccia I.Low dimensional chaos in surface waves:Theoretical analysis of an experiment[J].Phys Rev A,1986,34(4):3221-3237.
[8] Larrza A,Putterman S.Theory of non-propagating surface solitons[J].J Fluid Mech,1984,148(1):443-449.
[9] 周显初.非传播孤立波和表面张力[J].力学学报,1998,30(6):672-675.
[10] Miles J W.Nonlinear Faraday resonance[J].J Fluid Mech,1984,83(1):153-158.
[11] Miles J W.Parametrically excited solitary waves[J].J Fluid Mech,1984,148(1):451-460.
[12] 菅永军,鄂学全,柏威.参数激励圆柱形容器中的非线性Faraday波[J].应用数学和力学,2003,24(10):1057-1068.
[13] Jian Y J,E X Q,Zhang J.Damping of vertically excited surface waves in a weakly viscous fluid[J].Appl Math Mech-Engl Ed,2006,27(3):417-424.
[14] Kumar K,Tuckerman L S.Parametric instability of the interface between two fluids[J].J Fluid Mech,1994,279(1):49-68.
[15] Zhang W B,J VI?ALS.Pattern formation in weakly damped parametric surface waves[J]. J Fluid Mech,1997,341(1):225-244.

备注/Memo

备注/Memo:
收稿日期:2013-3-28;改回日期:。
基金项目:国家自然科学基金(批准号:11062005,11202092);非线性力学国家重点实验室开放基金;内蒙古自治区高等学校青年科技英才支持计划(批准号NJYT-13-A02);内蒙古自治区自然科学基金(批准号:2010BS0107,2012MS0107);内蒙古自治区自然科学基金重点项目(批准号:2009ZD01);内蒙古大学学科带头人科研启动基金(批准号:Z20080211);内蒙古自治区研究生教育创新计划资助项目;内蒙古大学提升综合实力资助项目(批准号:1402020201)
作者简介:刘全生(1979-),男,内蒙古赤峰人,讲师,2011级博士研究生.E-mail:smslqs@imu.edu.cn
通讯作者:菅永军(1974-),男,内蒙古巴彦淖尔人,教授,博士.主要从事应用数学和流体力学的研究.E-mail:jianyongjun@yahoo.com.cn
通讯作者:菅永军(1974-),男,内蒙古巴彦淖尔人,教授,博士.主要从事应用数学和流体力学的研究.E-mail:jianyongjun@yahoo.com.cn
更新日期/Last Update: 1900-01-01